Gadzan

Python实现软间隔核函数SVM

class binary_classification(object):
    def __init__(self, kernel, C=1.0, max_iter=1000, tol=0.001):
        self.kernel = kernel # K(x_i, x_j) = <phi(x_i), phi(x_j)>
        self.C = C # penalty coefficient
        self.max_iter = max_iter # maximum number of iterations for solver
        self.tol = tol # tolerance for the solver

    def fit(self, X, y):
        # Compute coefficients of the dual problem
        lagrange_multipliers, intercept = self._compute_weights(X, y)
        self.intercept_ = intercept # b
        support_vector_indices = lagrange_multipliers > self.support_vector_tol
        self.dual_coef_ = lagrange_multipliers[support_vector_indices] * y[support_vector_indices] # alpha_i
        self.support_vectors_ = X[support_vector_indices]

    def _compute_weights(self, X, y):
        # Solver to compute the intercept and lagrange multipliers
        raise NotImplementedError()

    def _compute_kernel_support_vectors(self, X):
        res = np.zeros((X.shape[0], self.support_vectors_.shape[0]))
        for i,x_i in enumerate(X):
            for j,x_j in enumerate(self.support_vectors_):
                res[i, j] = self.kernel(x_i, x_j)
        return res

    def predict(self, X):
        # Given a new datapoint, predict its label
        kernel_support_vectors = self._compute_kernel_support_vectors(X)
        prediction = self.intercept_ + np.sum(np.multiply(kernel_support_vectors, self.dual_coef_),1)
        return np.sign(prediction)

    def score(self, X, y):
        # Compute proportion of correct classifications given true labels
        predictions = self.predict(X)
        scores = predictions == y
        return sum(scores) / len(scores)

SMO算法计算权重

def _compute_intercept(self, alpha, yg):
    indices = (alpha < self.C) * (alpha > 0)
    return np.mean(yg[indices])
        
def _compute_weights(self, X, y):
    iteration = 0
    n_samples = X.shape[0]
    alpha = np.zeros(n_samples) # Initialise coefficients to 0  w
    g = np.ones(n_samples) # Initialise gradients to 1

    while True:
        yg = g * y

        # Working Set Selection via maximum violating constraints
        indices_y_positive = (y == 1)
        indices_y_negative = (np.ones(n_samples) - indices_y_positive).astype(bool)#(y == -1)
        indices_alpha_upper = (alpha >= self.C)
        indices_alpha_lower = (alpha <= 0)

        indices_violate_Bi = (indices_y_positive * indices_alpha_upper) + (indices_y_negative * indices_alpha_lower)
        yg_i = yg.copy()
        yg_i[indices_violate_Bi] = float('-inf') #cannot select violating indices
        indices_violate_Ai = (indices_y_positive * indices_alpha_lower) + (indices_y_negative * indices_alpha_upper)
        yg_j = yg.copy()
        yg_j[indices_violate_Ai] = float('+inf') #cannot select violating indices

        i = np.argmax(yg_i)
        j = np.argmin(yg_j)

        # Stopping criterion: stationary point or maximum iterations
        stop_criterion = yg_i[i] - yg_j[j] < self.tol
        if stop_criterion or (iteration >= self.max_iter and self.max_iter != -1):
            break

        # Compute lambda via Newton Method and constraints projection
        lambda_max_1 = (y[i] == 1) * self.C - y[i] * alpha[i]
        lambda_max_2 = y[j] * alpha[j] + (y[j] == -1) * self.C
        lambda_max = np.min([lambda_max_1, lambda_max_2])

        Ki = self._compute_kernel_matrix_row(X, i)
        Kj = self._compute_kernel_matrix_row(X, j)
        lambda_plus = (yg_i[i] - yg_j[j]) / (Ki[i] + Kj[j] - 2 * Ki[j])
        lambda_param = np.max([0, np.min([lambda_max, lambda_plus])])

        # Update gradient
        g = g + lambda_param * y * (Kj - Ki)

        # Direction search update
        alpha[i] = alpha[i] + y[i] * lambda_param
        alpha[j] = alpha[j] - y[j] * lambda_param

        iteration += 1

    # Compute intercept
    intercept = self._compute_intercept(alpha, yg)

    return alpha, intercept

参考论文:
LIBSVM: A Library for Support Vector Machines
Support Vector Machine Solvers


打赏码

知识共享许可协议 本作品采用知识共享署名 4.0 国际许可协议进行许可。

评论